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Abstract 

Background: The high burden of malaria and limited funding means there is a necessity to maximize the alloca‑
tive efficiency of malaria control programmes. Quantitative tools are urgently needed to guide budget allocation 
decisions.

Methods: A geospatial epidemic model was coupled with costing data and an optimization algorithm to estimate 
the optimal allocation of budgeted and projected funds across all malaria intervention approaches. Interventions 
included long‑lasting insecticide‑treated nets (LLINs), indoor residual spraying (IRS), intermittent presumptive treat‑
ment during pregnancy (IPTp), seasonal mass chemoprevention in children (SMC), larval source management (LSM), 
mass drug administration (MDA), and behavioural change communication (BCC). The model was applied to six geo‑
political regions of Nigeria in isolation and also the nation as a whole to minimize incidence and malaria‑attributable 
mortality.

Results: Allocative efficiency gains could avert approximately 84,000 deaths or 15.7 million cases of malaria in 
Nigeria over 5 years. With an additional US$300 million available, approximately 134,000 deaths or 37.3 million cases 
of malaria could be prevented over 5 years. Priority funding should go to LLINs, IPTp and BCC programmes, and SMC 
should be expanded in seasonal areas. To minimize mortality, treatment expansion is critical and prioritized over some 
LLIN funding, while to minimize incidence, LLIN funding remained a priority. For areas with lower rainfall, LSM is prior‑
itized over IRS but MDA is not recommended unless all other programmes are established.

Conclusions: Substantial reductions in malaria morbidity and mortality can be made by optimal targeting of invest‑
ments to the right malaria interventions in the right areas.
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Background
Around 3.2 billion people worldwide are at risk of 
malaria. In 2015, there were 214 million clinical cases and 
438,000 malaria-attributable deaths [1], the majority of 
which occurred in sub-Saharan Africa (88% of cases and 
90% of deaths), making malaria a leading public health 
problem and economic burden for the region. Children 
under 5  years old are the most susceptible to infection, 

clinical disease and death, with 70% of all malaria deaths 
occurring among this age group [2].

A range of highly cost-effective interventions are avail-
able to reduce the burden of malaria. Vector control, 
including long-lasting insecticide-treated nets (LLINs), 
indoor residual spraying (IRS) and larval source manage-
ment (LSM) have been demonstrated in multiple trials 
and in various settings to be highly effective in reducing 
infection and mortality [3–5]. Artemisinin-based combi-
nation therapy (ACT) is highly effective at treating clini-
cal malaria and has contributed significantly to major 
reductions (~40%) in the global burden of malaria since 
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being introduced in the 2000s [1]. Chemoprophylaxis 
has also been shown to be effective in high-risk popula-
tions: intermittent presumptive treatment during preg-
nancy (IPTp) can decrease still births, and seasonal mass 
chemoprevention in children (SMC) can reduce malaria-
attributable mortality [6, 7]. However, limited funding to 
implement these interventions has resulted in substantial 
gaps in malaria control in many of the sub-Saharan Afri-
can countries that still harbour substantial burdens of 
malaria.

Existing malaria modelling tools enable policy mak-
ers to estimate the epidemiological impact of scaling-up 
combinations of programmes or to estimate the require-
ments to achieve global targets [8–10]. However many 
countries, particularly in sub-Saharan Africa, are far from 
malaria elimination and require practical advice on how 
to allocate their current or projected budgets at state and 
country level in a way that achieves maximum impact. 
Presently there is a lack of quantitative tools to assist 
policy makers with these decisions. Allocative efficiency 
refers to the maximization of health outcomes using the 
most cost-effective mix of health interventions. ‘Optima’ 
is an analytic approach to assist decision-making around 
allocative efficiency. It was developed by the Burnet Insti-
tute and University of New South Wales in partnership 
with the World Bank to assist in optimizing resources for 
reducing the burden of diseases, particularly for HIV/
AIDS [11, 12]. Optima has been used to successfully shift 
the allocation of actual budgets towards programmes 
with greater cost-effectiveness to improve health out-
comes in over 40 countries [13–16]. Here, the Optima 
approach is applied to develop a model for malaria to 
specifically address this gap. The model can determine 
the optimal allocation of a given budget across a range of 
malaria interventions, geographical areas and risk popu-
lations, to minimize a user-defined objective (e.g., inci-
dence, mortality).

In order to demonstrate the model’s capacity, an appli-
cation is presented, conducted for the World Bank at 
their request, where the model was applied to the coun-
try of Nigeria. Nigeria accounts for more than 25% of the 
world’s malaria burden, more than any other country, 
with an estimated 59 million cases and 119,000 malaria-
attributable deaths in 2013 [1]. Almost one in five deaths 
of Nigerian children under five were due to malaria [17], 
and malaria contributed to an estimated 11% of Nigerian 
maternal mortality [17]. Since 2009, a 10% reduction in 
incidence has been observed following large, donor-
funded campaigns to distribute LLINs [1]. In addition, 
a series of performance-based contracts between the 
World Bank and the Nigerian Inter Faith Action Asso-
ciation (NIFAA) has resulted in increased utilization of 
programmes such as IPTp and LLINs [18]. However, 13 

out of 37 Nigerian states have no reported funding for 
malaria control efforts, including four of the six poorest 
states in the northeast that have high malaria burdens 
(Adamawa, Taraba, Borno, Yobe [19–21]). Providing sus-
tained funding to these areas is difficult due to the frag-
ile political and security situation that limits access, and 
this lack of funding certainty means that despite the low 
cost and proven effectiveness of chemoprophylaxis for 
at-risk populations, SMC is only being implemented on 
a pilot basis and IPTp coverage remains low [19, 22, 23]. 
Optimizing the allocation of scarce funding in targeted 
geographical regions to maximize reductions in malaria 
morbidity and mortality is a priority for malaria control 
programmes in Nigeria and globally.

This paper describes an Optima Malaria model and 
demonstrates its use as a policy decision tool by present-
ing its application to Nigeria. Through a variety of dona-
tions from high-income countries and low-interest loans 
sourced and coordinated by the World Bank, US$300 
million may be available in grant funds for malaria inter-
ventions in Nigeria over the next 5  years (2017–2022). 
The optimal allocation of current funding across malaria 
interventions, as well as the optimal allocation and 
impact of this additional funding, was assessed. This 
includes consideration of allocative efficiency across 
Nigeria’s six geopolitical regions, in order to demon-
strate how shifting funding between regions can target 
resources to where they are most needed, producing even 
greater benefits at the country level.

Methods
Data synthesis to assess disease burden
Data on malaria incidence were obtained from the 
Malaria Atlas Project (MAP) [20, 21], and population and 
mortality data were obtained from the UN Population 
Division [24]. Details are provided in Additional file 1.

Epidemic model
The model contains a dynamic transmission model of 
Plasmodium falciparum (accounting for an estimated 
85–100% of malaria cases in Nigeria [1, 25]) among 
humans and mosquitoes (Fig.  1). People in the model 
were distinguished as either: susceptible; infected with 
disease in the latent stage (approximating liver-stage 
infection); infected with clinical symptoms (approximat-
ing presence of circulating gametocytes and infectious to 
mosquitoes); or, recovered and immune (approximating 
individuals who have some exposure-acquired clinical 
immunity, but still have circulating gametocytes and are 
infectious to mosquitoes). The recovered and immune 
compartment was included in the model as the high rates 
of P. falciparum transmission in many countries means 
that exposure-acquired immunity is an important feature 
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of the epidemic, and so this was accounted for by follow-
ing the approaches of other modelling groups [8, 26–33]. 
When people in the model become infected they expe-
rience a latent period before becoming infectious, after 
which they either die or recover by either getting treated 
with drugs or developing clinical immunity. The model 
was stratified by population group (children, defined as 
0–5  years; pregnant women; and the rest of the popu-
lation, henceforth ‘general population’) and by each of 
the six geopolitical regions in Nigeria. Seasonality was 
included by scaling the total mosquito population size by 
a trigonometric function with period 1  year and ampli-
tude depending on the extent of seasonal effects in each 
geographical region. Further details on the model struc-
ture, equations, calibration, parameters and their sources 
are provided in Additional file 1.

Programmatic responses considered
Treatment of clinical malaria (i.e., people in the infected 
compartment) with ACT and seven intervention pro-
grammes were modelled: LLINs, IRS, IPTp, SMC, LSM, 
a behavioural change communication (BCC) programme 
and mass drug administration (MDA). The current 

coverage of each programme (by population group and 
region) was obtained from the National Malaria Elimina-
tion Programme (NMEP) End of Project Household Sur-
vey 2015 [23]; NMEP Malaria Key Indicator Survey 2015 
[19]; SuNMaP Malaria Control State Fact Sheets [34]; 
and the Malaria Consortium [22]. Where no or limited 
estimates were available for specific regions or popula-
tion groups, country estimates were used (see Additional 
file 1: Table C1).

For LLINs and IPTp, utilization was also considered. 
This was defined as the proportion of those with LLINs 
who slept under them, and the proportion of pregnant 
women who started IPTp that had the recommended 
three doses, respectively. These programmes were con-
sidered to be ineffective unless individuals were both 
covered and utilized them. Utilization could be increased 
by increasing the coverage of the BCC programme. Fur-
ther details are provided in Additional file 1.

Unit costs and effects of programmes
The unit costs and link between changes in programme 
coverage and model parameters were obtained from the 
literature and are summarized in Table  1, with sources 

Fig. 1 Model schematic. Compartments: susceptible, uninfected; exposed, infected with disease in the latent stage, approximating liver‑stage 
infection; infected, infected with clinical symptoms approximating presence of circulating gametocytes and infectious to mosquitoes; recovered 
and immune, approximating clinically immune individuals who still have circulating gametocytes and are infectious to mosquitoes. The model is 
stratified by population group (children, defined as 0–5 years; pregnant women; and the rest of the population) and by the six geopolitical regions 
in Nigeria
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and assumptions detailed in Additional file  1. As an 
example, LLINs have been shown to reduce the mos-
quito-biting rate by 56% for people who own and use 
them (Table 1, [8, 35]). If spending on LLINs is increased, 
the additional people in the model who become covered 
by the programme experience a reduction in mosquito 
bites, and therefore have a lower chance of becoming 
infected. This leads to a lower prevalence among humans, 
which in turn lowers the prevalence among mosquitoes 
and has flow-on effects even for people who were not 
covered by the LLIN programme.

Model calibration and validation
Data on annual incidence, number of malaria-attribut-
able deaths, treatment numbers and prevalence were 
used to calibrate the model for each population group 
and region (Additional file 1: Table B3). This was done by 
calibrating parameters for the proportion who develop 
immunity following infection, the average duration of 
immunity, the malaria case fatality rate and the force of 
infection (the force of infection was dynamic and pro-
portional to prevalence in the model, but the propor-
tionality constant was varied) so that at equilibrium the 
model outcomes best fit available data for the 2015 inci-
dence, mortality, treatment numbers and prevalence. The 
short malaria life cycle and rapid changes in response to 
intervention coverage over the previous 5 years [1] con-
founds any background trends in incidence and mortal-
ity, making it suitable to start a model from equilibrium 
for forward projections. However, the effects of changes 
in intervention coverage in the model on epidemiologi-
cal outcomes still needed to be validated. The validation 
was performed by calibrating the model to 2010 epide-
miological and programme coverage data (the only other 
year programme data were available, as malaria indicator 
surveys were only undertaken in 2010 and 2015 [19, 36]), 
and then linearly varying the coverage of programmes 
to 2015 values while running the model over this 5-year 
period. The resulting model estimates for 2015 incidence, 
prevalence and malaria-attributable deaths among each 
region and population group were then compared to 
2015 data estimates.

Optimization
The model was used to project an estimation of the total 
incidence of clinical malaria and malaria-attributable 
mortality over the next 5  years (2017–2022) associ-
ated with each allocation of funding (and corresponding 
programmatic coverage levels attained) between pro-
grammes, populations and regions. As the distribu-
tion of spending changes, so does the coverage of each 
programme in the model according to the unit costs in 
Table  1 with maximum coverage constrained due to 

logistical reasons. This varies the model parameters and 
leads to different values for total incidence and mortality. 
An adaptive stochastic descent optimization algorithm 
[37] was used to incrementally shift funding between 
programmes, population groups and regions in order to 
find the allocation that minimized: (1) incidence; and, (2) 
mortality. Two scenarios were considered for this pur-
pose: (a) optimizing estimated current spending over the 
next 5 years (2017–2022); and, (b) optimizing estimated 
current spending with an additional US$300 million over 
the next 5 years (2017–2022). The optimal resource allo-
cation among different interventions in each region was 
also simulated with incrementally less or more funding 
available. Further methodological details are provided in 
Additional file 1.

Sensitivity analysis
Once the geospatially optimal allocation of funding was 
determined for each scenario, a multivariate sensitiv-
ity analysis was conducted to estimate bounds for the 
impact of allocating funding in this way (i.e., bounds for 
the number of deaths and cases prevented). Ninety-five 
per cent bounds were obtained for the number of deaths 
or cases averted using Monte Carlo sampling for the 
model’s structural parameters, unit costs and the effects 
of programmes, with samples taken from Normal distri-
butions around point estimates (standard deviations of 
5%, truncated at 10% above and below).

Results
Current burden of disease in Nigeria
Current data indicate that the states with the largest pro-
portion of malaria cases are Kano and Kaduna; however, 
on a per-capita basis, the North West and North Central 
regions have the greatest burden (Fig.  2; see Additional 
file  1: Appendix B for data sources). Current data also 
indicate that the per-capita rate of malaria-attributable 
mortality was the highest in the North Central and North 
West regions (Additional file  1: Figure D1). These data 
were used for model calibration.

Current programmatic responses in Nigeria
Table  2 shows the current coverage of malaria preven-
tion programmes in Nigeria, by region and population 
group. LLINs are the predominant preventive interven-
tion, with the greatest coverage (86%) being in the North 
West region. Malaria is highly seasonal in this region, 
and is currently the only region to use SMC, albeit at low 
coverage (28% of children 0–5 years). Despite the malaria 
burden being the greatest in the northern regions, IPTp 
and IRS coverage were the lowest. In particular, IPTp 
coverage was less than half of all pregnant women for all 
regions except the South West.
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Coverage of LLINs was greater among the two prior-
ity population groups (children 0–5  years and pregnant 
women) than for the general population (Table  2), and 
also where the burden of disease was the highest.

BCC programmes (typically operated through religious 
centres or targeted to healthcare workers) had great-
est coverage in the southern regions (Table 2). Although 
these are not the areas where the malaria burden is 

Fig. 2 Annual malaria incidence and population‑weighted incidence in Nigerian states (Source: Malaria Atlas Project [20, 24])

Table 2 Estimated 2015 coverage of malaria interventions by population groups and geopolitical region. Sources: NMEP 
End of Project Household Survey 2015 [23]; NMEP Malaria Key Indicator Survey 2015 [19]; SuNMaP Malaria Control State 
Fact Sheets [35]; Malaria Consortium [22]

a LLIN coverage defined as the percentage of households with at least one net for every two people [37]
b Defined as the percentage reporting being exposed to prevention message
c Defined as the percentage of household members who slept under a mosquito net the previous night divided by the percentage of coverage
d Defined as the percentage of children under five who slept inside an LLIN last night among children in a household with at least one LLIN. This assumes that where 
an LLIN is available a child would preferentially use it over other household members
e Defined as the percentage of pregnant women who had at least three doses of IPTp among those who had at least one

NW (%) NC (%) NE (%) SW (%) SE (%) SS (%)

2015 coverage

 IRS 5 1 3 1 7 5

 IPTp (among pregnant women) 40 37 50 64 50 47

 SMC (among children 0–5 years) 28 0 0 0 0 0

 LLIN (among the general population)a 83 43 68 32 48 52

 LLIN (among children 0–5 years) 94 65 82 57 73 71

 LLIN (among pregnant women) 94 61 89 64 62 67

 BCC [19]b 35 26 31 44 42 38

Utilization

 LLIN (among the general population)c[19, 23] 66 69 77 58 34 52

 LLIN (among children 0–5 years)d [19] 72 62 63 52 37 49

 LLIN (among pregnant women) [19] 66 60 61 39 35 46

 IPTp (among pregnant women)e[19, 39] 39 49 50 30 52 34
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greatest, these are the areas where utilization of LLINs 
is lowest, in particular among children [19, 23], suggest-
ing the need for such programmes. In all areas, more 
than half of the population surveyed reported not being 
exposed to prevention messages [19], indicating the need 
to expand education and BCC programmes.

Current spending on malaria programmes in Nigeria
Based on the unit costs of each malaria prevention 
or treatment programme (Table  1), the annual direct 
costs associated with the current coverage of pro-
grammes were estimated to be US$175,351,471 (see 
Additional file  1). By comparison, the World Malaria 
Report records that in 2014 the Nigerian Govern-
ment reported direct malaria funding totalling 
US$285,931,583 (entirely donor-funded: Global Fund 
US$137,920,815; the World Bank US$52,220,588; PMI/
USAID US$73,771,000; other bilaterals US$20,157,565; 
WHO US$861,615; and UNICEF US$1,000,000) [1]. 
There are several key factors that may explain the dif-
ference between this estimate and the 2014 value from 

the World Malaria Report. Firstly, this estimate does 
not include the costs of non-direct programmes such as 
central management and surveillance. Second, the cost 
of achieving this level of LLIN coverage was assumed 
to be spread evenly over the past 5  years (given their 
5-year lifespan). If the majority of currently owned 
LLINs were purchased in more recent years, then the 
expenditure in these years would be considerably 
higher. Third, given the funding for malaria in Nigeria 
is entirely from donors, there is likely to be substantial 
variability between years.

The programme receiving the greatest amount of fund-
ing was LLINs, followed by treatment (including testing 
costs), while the North West region was the one receiving 
the most current funding for programmes (Fig. 3).

Model calibration and validation
After calibrating model parameters, model outcomes for 
annual incidence, mortality and treatment numbers fit 
the 2015 data in each region and among each population 
group well (Additional file 1: Figure A2).

Fig. 3 Estimated current annual spending by region and programme, according to 2015 coverage. Values for each population group and sources 
are provided in Additional file 1
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Results of the model validation exercise are shown in 
Fig. 4. The model also calibrated to 2010 data well. Pro-
jecting the model to 2015 with programme coverages 
changing from 2010 to 2015 levels only produced mar-
ginal changes in the total annual incidence and deaths 
in each region; however this was consistent with the 
minimal variations observed in the data over this period. 
It is possible that any discrepancies could be due to the 
greater uncertainty in the coverage levels of programmes 
in 2010; in particular there were no data to reflect cov-
erage of any BCC programme, which was therefore 
assumed to be zero, despite the possible existence of 
undocumented education campaigns.

Region specific optimization
The optimal allocation of funding within each region var-
ied depending on whether the objective was to minimize 
mortality or incidence, and also as total available budget 
was increased (Fig.  5 for the North East region, Addi-
tional file 1: Figures D2–D7 for other regions).

In general, when optimization was performed within 
each region the results suggested that treatment and 
LLINs should be funded as a priority intervention and that 
IPTp and BCC are cheap and effective and should also be 
funded. Furthermore, when the objective was to minimize 
mortality, treatment expansion combined with SMC in 
seasonal areas is deemed to be critical and prioritized over 
LLIN, while LLIN remained a priority when minimizing 
for incidence. For appropriate areas with low rainfall, LSM 
is prioritized over IRS due to lower cost and comparable 
effectiveness, whereas MDA is not recommended unless 
other programmes are established (Additional file 1).

Geospatial optimization
The optimal geospatial allocation of funding was simi-
lar regardless of whether the objective was to minimize 
mortality or incidence over the next 5-year period, with 
the exception that the South West region was prioritized 
over the South region for funding to minimize mortality 
and vice versa to minimize incidence. Within each region 
the actual programmes being funded varied under differ-
ent scenarios (consistent with Fig. 5).

The model estimated that a total 83,611 (76,022–
106,712) deaths (15%), could be averted over 5 years by 
optimizing the estimated 2015 spending (Additional 
file 1: Figure D10), and 134,384 (114,883–142,858) deaths 
(24%) could be averted over 5  years by optimizing the 
estimated 2015 spending +US$300 million to minimize 
mortality (Fig. 6).

The model estimated that a total 15.7 (13.7–23.3) mil-
lion cases (5%) could be averted over 5 years by optimiz-
ing estimated 2015 spending (Additional file  1: Figure 
D11), and 37.3 (34.0–47.8) million cases (11%) could be 
averted over 5 years by optimizing estimated 2015 spend-
ing +US$300 million (Fig. 7).

To minimize country-level mortality or incidence over 
the 5-year period the model ultimately suggests that the 
largest shifts in funding should be from the southern 
regions to the northern regions. Despite leading to an 
overall reduction in mortality or incidence, this shift in 
funds resulted in slightly worse outcomes for some of the 
southern regions.

Although geographically optimizing spending led to 
substantial reductions in malaria-attributable deaths 
and malaria incidence, even with an additional US$300 

Fig. 4 Model validation exercise showing the effects of changes in programme coverage in the model on epidemiological outcomes. Programme 
coverage data were available for 2010 and 2015 [19, 37]. The model was calibrated to epidemiological and programme coverage data from 2010 
and then projected forward by linearly varying the coverage of programmes to 2015 values
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million there were still nearly 90,000 deaths and 60 mil-
lion cases of malaria each year (Fig. 8).

Discussion
A geospatial, epidemic model coupled with an economic 
and costing framework was developed to estimate the 
optimal allocation of funding across population groups 
and programmes in order to minimize malaria incidence 
or malaria-attributable mortality. When applied across 
geopolitical regions of Nigeria the model predicted 

that allocative efficiency gains could avert approxi-
mately 84,000 (15% of ) deaths or 15.7 million (5% of ) 
malaria cases over 5 years, if the estimated current funds 
(approximately US$175 million per annum) for malaria 
control continued to be available. If an additional US$300 
million were available for this 5-year period, then opti-
mal spending could avert approximately 134,000 deaths 
(24% of ) deaths or 37.3 million (11% of ) malaria cases. 
Although these are substantial gains, even with this sig-
nificant additional funding there were still nearly 90,000 

Fig. 5 Estimated current and optimal 5‑year spending allocations on programmes in the North East (NE) region for varying total budget levels. 
Optimized to minimize malaria‑attributable mortality (left) or incidence (right)
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deaths and 60 million cases of malaria each year, support-
ing previous modelling that indicates the current range of 
malaria interventions may be inadequate to address the 
epidemic in high-prevalence countries [8].

Geospatial analysis results suggest that additional 
reductions in incidence and mortality are possible by 
focussing funding on areas that have the highest burden 
of malaria. In the example of Nigeria, this is the north-
ern regions, although in practice this may be difficult for 
the Nigerian Government due to conflict, war and other 
security threats occurring in these areas. More generally 
this analysis demonstrates that by increasing granularity, 
interventions can be more accurately targeted to generate 
larger allocative efficiency gains. It was possible to assess 
this in Nigeria due to the geo-specific data and parameter 
estimates obtained from the National Malaria Elimina-
tion Programme surveys [19, 23], but as countries move 

towards malaria elimination the increasing resolution 
required to inform optimal resource allocation will rely 
far more heavily on surveillance systems within coun-
tries. There is therefore a need to ensure data capture 
and monitoring systems are established to enable this to 
occur.

Consistent with the literature, LLINs were found to be 
critical for preventing malaria and treatments critical for 
preventing mortality [8]. Once treatment, LLINs, IPTp, 
and BCC programmes had reached sufficient coverage 
then the model suggested that SMC should receive prior-
ity funding to reduce mortality and LSM should receive 
priority funding to reduce incidence. The different opti-
mal allocations when minimizing either incidence or 
mortality highlights the need for clear and specific stra-
tegic targets, designed in consultation with country 
representatives, implementation partners, community 

Fig. 6 Geospatial optimization to minimize mortality. Optimized 5‑year spending of estimated current budget +US$300 million allocations com‑
pared to estimated current (non‑optimized) spending
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organizations, and other stakeholders. Once these have 
been established, many conceivable objective functions 
can be used within the model’s optimization procedure 
to determine how resources should be optimally allo-
cated. For example, possible candidates include minimiz-
ing disability-adjusted life years (DALYs), which could be 
implemented as a weighted sum of incidence and mortal-
ity over each population group, minimizing deaths whilst 
ensuring that no regions become worse off, or ensuring 
high coverage of particular interventions among children 
before any other programmes are funded. Further, Nige-
ria had a specific need to optimize over the next 5-year 
period; however countries will need to define the time 

period of their strategies because optimizing over dif-
ferent time frames can change priorities. For example, 
lowering incidence in the short term can lead to a lower 
prevalence and reduce deaths in the longer term.

Once a strategic goal is defined, the feasibility of shift-
ing current funding allocations towards a more optimal 
mix must be considered. A potential political implemen-
tation challenge could be that to maximize the overall 
impact of funding some geographical areas would be 
worse off. However, in many resource-limited countries 
(including Nigeria) malaria programmes receive large 
amounts of donor funding [1], which may be less likely 
to be tied to particular programmes and areas than 

Fig. 7 Geospatial optimization to minimize incidence. Geospatially optimized 5‑year spending of estimated current budget +US$300 million 
allocations compared to estimated current (non‑optimized) spending
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government-funded programmes. When presented with 
quantitative evidence of overall better outcomes, donor 
funding supporting malaria elimination programmes 
may have the flexibility to make these changes.

This analysis found LSM to be prioritized over IRS and 
that it was therefore more cost-effective when combined 
with other malaria programmes; however, it must be 
emphasized that there is well-established evidence sup-
porting the effectiveness of IRS, whereas the evidence to 
support the effectiveness of LSM is much weaker [4, 5]. 
Therefore, this finding must be considered in the specific 
context of Nigeria, where prior infrastructure investment 
in LSM has occurred over the past 5 years [38, 39]. In this 
context, these results support the continued introduc-
tion and scale-up of LSM programmes in Nigeria sub-
ject to rigorous local analysis of environmental suitability 
in terms of the number, type and accessibility of water 
sources. At this stage, the limited number of studies on 
the effectiveness of LSM is insufficient to support the 
general recommendation of a movement away from the 
status quo of IRS programmes to develop LSM capacity 
in other settings.

The approach used in this paper is able to produce 
practical outputs to inform policy. The findings also dem-
onstrate that allocative efficiency analysis can go beyond 
the scope of cost-effectiveness league tables; by consider-
ing the optimal allocation of a series of increasing budg-
ets for each region, the model determined that additional 

interventions may be added to the optimal mix before the 
current interventions have reached saturation coverage.

The model is flexible enough to incorporate additional 
features that are likely to influence outcomes where data 
are available. For example, the approach taken allows 
for the cost and effectiveness of programmes to vary 
by region. This means that if evidence is found of the 
effectiveness of programmes decreasing due to wide-
spread drug resistance or insecticide resistance, it can be 
included in future analyses, and that the cost of different 
delivery modes for programmes can be included for set-
tings where (unlike Nigeria) programmes are not deliv-
ered through private sector contracts. This could also 
include updates incorporating the partial utilization of 
programmes: the binary measure of IPTp utilization may 
understate the actual effectiveness of the programme, 
since pregnant women who receive fewer than three 
doses of IPTp may experience partial protection. How-
ever, even with potentially underestimated effectiveness, 
IPTp received priority funding.

Population groups and their movements can also be 
varied. In particular, as malaria is endemic across Nigeria 
and the burden is high relative to neighbouring countries, 
immigration, movements between regions and ‘importa-
tion’ of malaria infections were not modelled but could 
be included in other settings. A single, density-depend-
ent population of mosquitoes was also assumed for each 
region; however, differences in mosquito population 

Fig. 8 Model projections for annual malaria incidence and malaria‑attributable deaths. Left: annual malaria‑attributable deaths with continued cur‑
rent spending, continued current spending optimized to minimize mortality, and continued current spending +US$300 million optimized to mini‑
mize mortality. Right: annual malaria incidence with continued current spending, continued current spending optimized to minimized incidence, 
and continued current spending +US$300 million optimized to minimize incidence
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characteristics can be varied to account for differences 
in climate and species between regions. Although annual 
average costs were used for seasonal-dependent pro-
grammes, the use of annual averages is suitable for 
budgetary purposes if seasonality is considered to be an 
implementation issue: for example, IRS should be imple-
mented before the peak season begins. For programmes 
such as SMC, unit costs were reduced to account for the 
intervention only being required for parts of the year.

There are limitations in knowing what proportion 
of funding commitment could actually be translated 
into end product. This issue is minimized in Nigeria, 
as unit costs came largely from private sector reports 
where a specified number of units were delivered for 
a total contract value, e.g., [18, 34], thus accounting for 
funding being lost to inefficiencies or being otherwise 
unaccounted for. Finally, as with all mathematical mod-
els, there is uncertainty in each parameter. In particu-
lar there is a lack of randomized intervention trials to 
inform setting-specific effectiveness assumptions for 
each programme. Even though some of this uncertainty 
was accounted for by including confidence bounds, there 
remains inherent uncertainty associated with the choice 
of model structure. The recovered compartment repre-
sents infected individuals who have exposure-acquired 
clinical immunity but who are still able to transmit para-
sites to the mosquito population. Immunity acquisition is 
known to be age-dependent, which was implicitly mod-
elled by separating the effects of immunity among chil-
dren (the likelihood of developing immunity, the duration 
of immunity and the risk of death per infection) from the 
rest of the population. Immunity was also modelled to 
wane based on the background entomological inocula-
tion rate (following [26, 30, 40], Additional file  1). This 
approach is pragmatic given the limited geographically 
specific data on immunity available; however there are 
many modelling groups investigating the effects of immu-
nity with different model types and model structures 
(including within-host models, age-structured models, 
partial differential equations models with immunity as a 
continuum and explicitly implementing different types of 
immunity such as immunity at the sporozoite and liver 
stages and blood-stage immunity [26–29, 41–43]). Future 
model expansions could consider how to best structure 
a population-level compartmental model to approximate 
these complex effects in the context of available data.

Conclusions
The use of quantitative tools to guide malaria budget 
allocation decisions can save a significant number of 
lives. In Nigeria, allocative efficiency gains could avert 
approximately 84,000 (15% of ) deaths or 15.7 million (5% 
of ) malaria cases over 5  years, if the estimated current 

funds for malaria control continued to be available. This 
requires tailoring programme focus areas for specific 
regions and targeting funding to places that it can have 
the greatest impact.
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